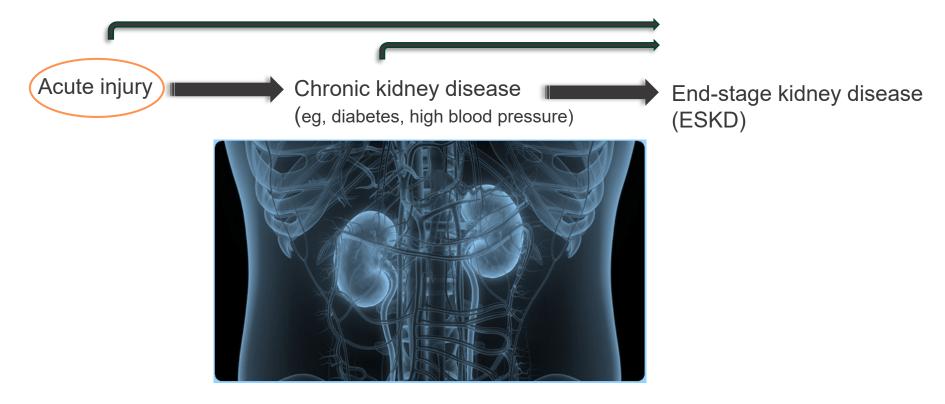


Targeted therapies for kidney diseases

Non-confidential summary

April 2024


GUARD THERAPEUTICS – IN SHORT

- Clinical stage biotechnology company focusing on kidney diseases
- Lead investigational drug RMC-035 developed for prevention & treatment of kidney injury in relation to open heart surgery
 - Granted Fast Track Designation by the FDA
- Recently completed Phase 2 study (n=177) demonstrated robust efficacy on clinically relevant kidney endpoints (eGFR, MAKE)
- Entering Phase 2b dose-finding study (POINTER) followed by a single Phase 3 study with potential for conditional (accelerated) approval
- Lead indication USD >1 bn opportunity alone no approved therapies
- Preclinical peptide platform based on RMC-035 mechanism with strong efficacy in CKD models, addressing even larger market opportunities
- Listed on Nasdaq First North Growth Market in Stockholm [GUARD]

EXPERIENCED MANAGEMENT TEAM WITH PROVEN TRACK RECORD IN GLOBAL DRUG DEVELOPMENT

KIDNEY DISEASE – A SIGNIFICANT UNMET MEDICAL NEED


END-STAGE KIDNEY DISEASE – A DEVASTATING CONDITION WITH POOR OUTCOME

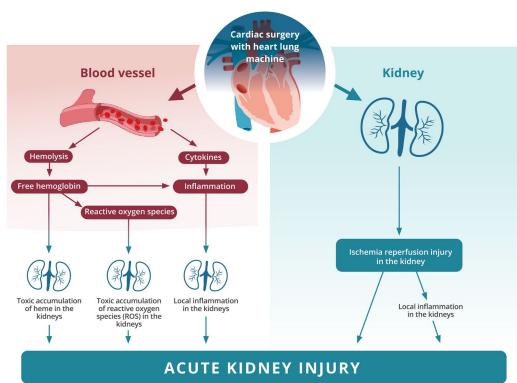
- Requires life-long dialysis treatment (or kidney transplantation)
- Annual mortality remains unacceptably high (15-20%)
- Prognosis worse than many forms of metastatic cancer
- Cost of patient management very high prevention is cost-effective

KIDNEY INJURY IN OPEN HEART SURGERY

- Nearly half a million Coronary Artery Bypass Graft (CABG) and/or valve replacement surgeries performed each year (US/Europe)
- Procedure often causes substantial kidney injury (collateral damage)
- Kidney injury frequently becomes permanent
 - Incident chronic kidney disease (CKD)
 - Progressive CKD & End-Stage Kidney Disease (ESKD)
 - Associated comorbidities, eg cardiovascular disease

No approved drugs to prevent or treat kidney injury in this setting

CABG, coronary artery bypass graft; CKD, chronic kidney disease; ESKD, end-stage kidney disease Meersch et al. Intensive Care Med (2017); Mozaffarian et al. Circulation (2016); OECD/EU Health at a glance (2016); 2. Pickering JW et al. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies, Am J Kidney Dis. 2015 Feb; Epidemiology data on file

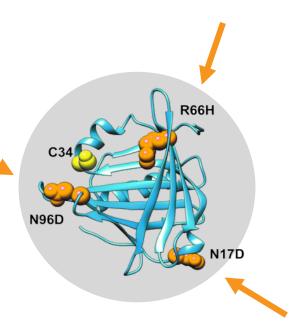

MECHANISMS OF KIDNEY INJURY IN OPEN HEART SURGERY

Two key contributing factors:

- Ischemia-reperfusion injury (IRI)
- heme toxicity (hemolysis)

Secondary events:

- Mitochondrial dysfunction
- Inflammatory response



IRI, ischemia-reperfusion injury

Our product – RMC-035

RMC-035 IS FIRST-IN-CLASS WITH CLINICALLY VALIDATED MECHANISM

- RMC-035 is a druggable, recombinant & patent protected variant of endogenous protein alpha-1-microglobulin (A1M)
- Administered by IV infusion
- Improved physicochemical properties compared to native A1M:
 - Three amino acid substitutions to improve solubility
 - N-terminal tag for increased stability & solubility
 - Lack of glycosylation (manufactured in E. coli)

Provides a druggable protein with favorable drug properties

A1M STRUCTURE & FUNCTION ARE WELL CHARACTERIZED

 Amino acid residue Cysteine 34 & tertiary protein structure provide the basis for A1M function

Neutralize oxidative stress

• Reductase activity (reduction of 5-6 free radicals per A1M molecule)

His123

• Free radical trapping (covalent trapping of 3-4 radicals per A1M molecule)

Clean up free heme

Protect from mitochondrial stress

- **Heme binding & degradation** (two specific heme-binding sites, binds heme in a 2:1 molar ratio)
- Mitochondrial binding/stabilization (binding to Cytochrome C, Complex I)

RMC-035 – A NOVEL PARADIGM FOR KIDNEY PROTECTION

Evolutionary conserved mechanism – aligned with pathophysiology of acute kidney injury

Robust preclinical efficacy in numerous disease models & species – provides translational confidence

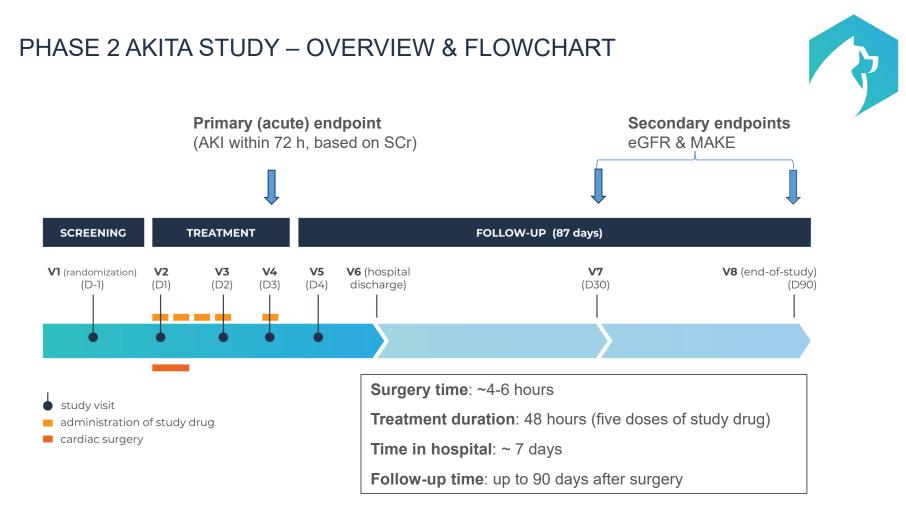
> Preferential biodistribution to kidney (tubular cells) – main site of cellular injury in open-heart surgery

Clinical Phase 2 (AKITA) data with 177 patients – clinically meaningful kidney protection

First therapy in open-heart surgery with consistent efficacy on clinically relevant kidney outcomes (eGFR, MAKE)

Clinical data with RMC-035

PHASE 1 DATA - RMC-035 IS SAFE & WELL TOLERATED


- 52 subjects exposed to RMC-035 in four Phase 1 studies
- No serious adverse events (SAEs) related to study drug
- Pharmacokinetic profile consistent with small therapeutic protein (short half-life due to renal clearance)

Study	Phase	Population	Dosing	Key objectives	Locations	Status
ROS-01	Phase 1	Healthy subjects	Single dose (0.08-2.6 mg/kg)	Safety, tolerability	Sweden	Completed
ROS-02	Phase 1	Healthy subjects	Multiple dosing (0.43-1.3 mg/kg)	Safety, tolerability	Sweden	Completed
ROS-03	Phase 1	Renal impairment	Single dose (0.22 or 0.43 mg/kg)	Pharmacokinetics	Sweden	Completed
ROS-04	Phase 1b	Cardiac surgery	Multiple dosing (0.65 or 1.3 mg/kg)	Safety, tolerability	Germany	Completed

PHASE 2 STUDY (AKITA) - MAIN OBJECTIVES

- Randomized, placebo-controlled, adaptive, parallel group study
 - Global study with patient enrolment in EU, Canada, US
- Objective to establish relevant efficacy signal(s) to guide further development
- Multiple endpoints for evaluation:
 - <u>Acute endpoints</u> short-term prognostic markers for clinically relevant long-term outcomes
 - <u>Chronic endpoints</u> clinically relevant kidney outcomes to be confirmed in Phase 3 (to support marketing approval)
- No single Phase 2 endpoint captures all relevant treatment effects

Overall net improvement of kidney function (eGFR) > 4 mL/min

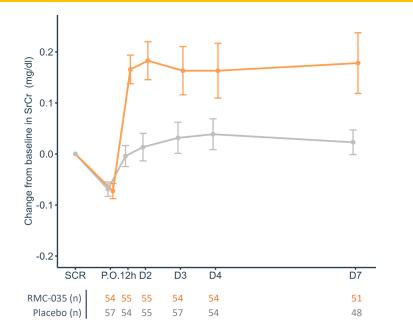
SUMMARY OF EFFICACY – PRIMARY & SECONDARY ENDPOINTS

Statistically & clinically significant improvement of kidney function with RMC-035 vs placebo

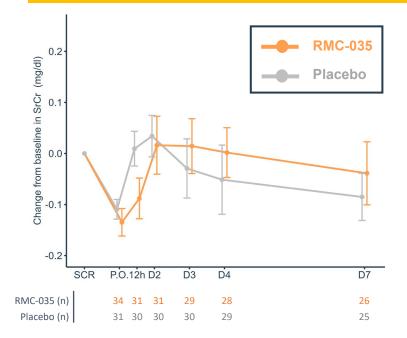
- Efficacy even stronger in CKD patients (6-8 mL/min)
- Reduced proportion of patients with severe loss of kidney function MAKE90
 - MAKE90 expected primary endpoint in Phase 3

(90 days after surgery)

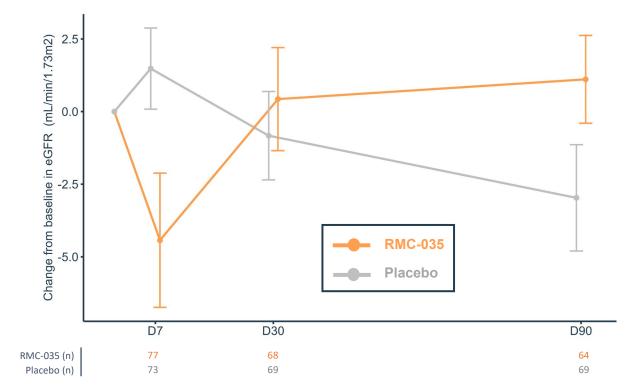
- No efficacy shown based on acute (primary) endpoint, but analyses confounded by a shortlived, reversible increase of SCr with the higher RMC-035 dose
 - Mechanism of SCr increase is well understood due to tubular overexposure consistent with toxicological evaluations (cynomolgus, marmoset, rodents)
- Efficacy & safety profiles support further development



SERUM CREATININE: CHANGE FROM BASELINE TO DAY 7 ACUTE CREATININE RISE DRIVEN BY HIGHER RMC-035 START DOSE


 $eGFR \ge 60 mL/min/1.73m^2$

Acute SCr increase in patients receiving 1.3 mg/kg RMC-035


eGFR < 60 mL/min/1.73m²

No SCr increase in patients receiving 0.65 mg/kg RMC-035

Error bars indicate mean +/- Standard Error (SE); P.O, pre-operative (before surgery); SCR, Screening; eGFR, estimated glomerular filtration rate; SrCr, serum creatinine Source: Post-hoc analysis of pre-specified endpoint and eGFR subgroup

CHANGE FROM BASELINE IN RENAL FUNCTION (eGFR) CLINICALLY & STATISTICALLY SIGNIFICANT IMPROVEMENT OF LONG-TERM RENAL FUNCTION WITH RMC-035

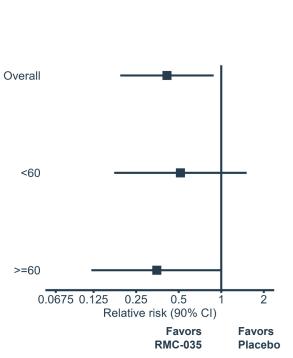
eGFR benefit at Day 90:

Measured	MMRM model	
4.1 mL/min	4.3 mL/min	
	p=0.063*	

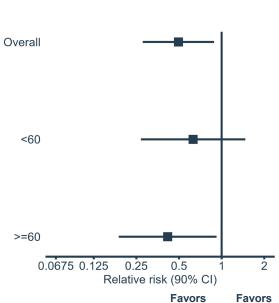
Pre-defined alpha level was 0.1. P-values < 0.1 are statistically significant.

Error bars indicate mean +/- Standard Error (SE); eGFR, estimated glomerular filtration rate; MMRM, Mixed Model of Repeated Measures Source: Table 14.2.3.3.1.

CHANGE FROM BASELINE IN RENAL FUNCTION (eGFR) IMPROVEMENT OF LONG-TERM RENAL FUNCTION STRONGER IN SUBGROUP WITH LOWER RMC-035 DOSE (CKD PATIENTS)

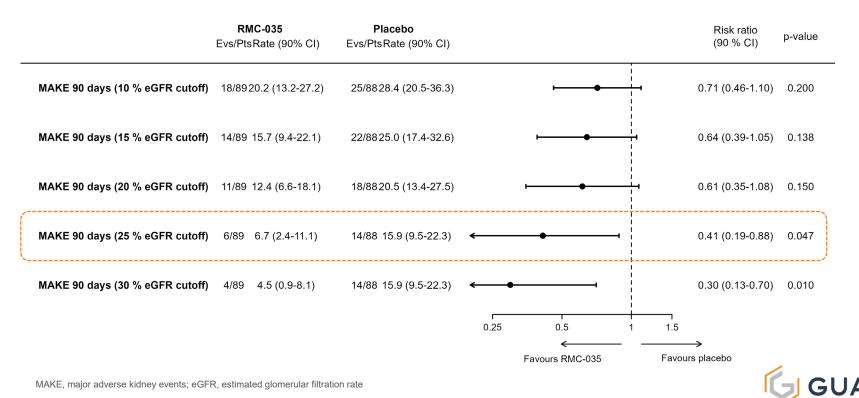

eGFR subgroups pre-specified based on different start doses and risk for kidney injury

Source: Table 14.2.3.3.1 Error bars indicate mean +/- Standard Error; MMRM, Mixed Model of Repeated Measures


MAKE90 – REGULATORY PHASE 3 ENDPOINT CLINICALLY & STATISTICALLY SIGNIFICANT REDUCTION OF MAKE90

	RMC-035 (N=89)	Placebo (N=88)	
Number (%) of Subjects with MAKE at Day 90	6 (6.7%)	14 (15.9%)	
Death through Day 90	4	4	
Dialysis through Day 90	3	2	
≥25% eGFR [†] reduction at Day 90	3	10	
Relative Risk (90% CI)	0.41 (0.19, 0.88) p=0.047 *		

SENSITIVITY ANALYSIS OF MAKE90 CONFIRMS EFFICACY SIGNAL ON REGULATORY PHASE 3 ENDPOINT


	RMC-035 (N=89)	Placebo (N=88)	
Number (%) of Subjects with MAKE at Day 90	10 (11.2%)	20 (22.7%)	
Death through Day 90	4	4	
Dialysis through Day 90	3	2	
≥25% eGFR [†] reduction at Day 90	7	15	
Relative Risk (90% CI)	0.50 (0.28, 0.88) p=0.041 *		

CI, confidence interval MAKE, Major Adverse Kidney Events, [†]eGFR calculated using CKD-EPI equation with <u>serum creatinine & cystatin C</u> Source: Table 14.2.3.9.3

POST-HOC ANALYSIS: RMC-035 CONSISTENTLY REDUCES MAKE90 USING VARIOUS THRESHOLDS OF eGFR LOSS

Source: post-hoc analyses of Study 21-ROS-05

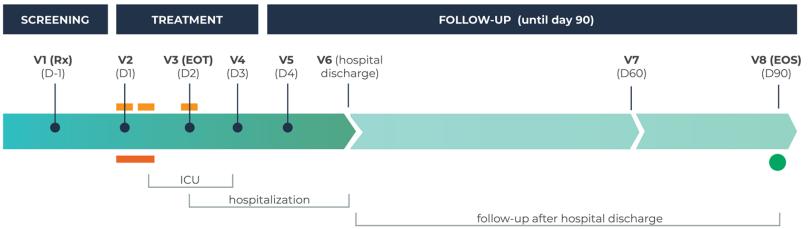
Clinical development plan including Phase 2b dose-finding study POINTER

LATE PHASE DEVELOPMENT PLAN VETTED WITH FDA

- FDA (type C) meeting in December 2023 with favorable outcome
- Recognition of current efficacy data eGFR (kidney function) & MAKE90
- Confirmation of Fast Track Designation status
 Indication eligible for Breakthrough Therapy Designation
- Agreement on proposed design elements of Phase 2b study (POINTER)
- Fruitful discussion on Phase 3 endpoint to be continued after Phase 2b
 - Confirmation of a single pivotal Phase 3 study to support NDA
 - Potential for accelerated approval based on interim analysis of eGFR

PHASE 2B (POINTER) STUDY – OVERVIEW

- Global study, run under an US IND
 - Recruitment in Europe & Canada
- Sample size ~ 160 patients
- Two dose arms (60 & 30 mg) & Placebo (2:2:3 randomization)
 - Three drug administrations (surgical dose, 6 & 24 h after first dose)
- Study preparations progress well first regulatory approval in April 2024 (Health Canada)
- First patient enrollment expected in Q3 2024
- Expected recruitment time ~ 1 year



PHASE 2B (POINTER) – STUDY SCHEME

Principal focus is kidney outcomes on Day 90

Rx = randomization EOT = end-of-treatment EOS = end-of-study

study visit

administration of study drug

cardiac surgery

primary endpoint evaluation

eGFR, estimated glomerular filtration rate; MAKE, major adverse kidney events

Key endpoints:

<u>Primary:</u> change of renal function (eGFR) from baseline to Day 90 <u>Secondary:</u> MAKE90

SECOND CLINICAL PROGRAM – KIDNEY TRANSPLANTATION

DRUG PROGRAM	PROJECT	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3
RMC-035	Open-heart surgery					
	Kidney transplantation				* 1 1 1 1 1 1 1 1 1 1 1	

- Treatment objective: improve long-term graft function in kidney transplant recipients
- Phase 1b PK/safety study completed
- Further development considered after establishment of optimal dose in heart surgery

Market, competition, IP

GLOBAL MARKET OPPORTUNITY IN HEART SURGERY >1B USD

- Market opportunity in lead indication alone >USD 1bn
 - Target population open heart surgery (CABG and/or valve) with increased risk for kidney injury
 - Total US population ~250,000 patients
 - Addressable US patient population ~100,000 patients (~30,000 CKD patients)
 - Price potential with current TPP ~USD 5-7.5k per patient (conservative estimate)
 - Total US addressable market opportunity ~USD 500-750m
 - Global addressable market opportunity >USD 1bn
- Additional market opportunities in related acute settings (eg kidney transplantation)
- Preclinical peptide platform suitable for chronic administration, addressing even larger market opportunities in CKD and non-renal indications (multi-billion USD market)
 - Eg diabetic kidney disease, FSGS, IgAN, Alport syndrome

CABG, coronary artery by-pass graft; CKD, chronic kidney disease; TPP, target product profile MoA, mechanism-of-action; FSGS, focal segmental glomerulosclerosis; IgAN, IgA nephropathy

Sources: External analysis (draft report, September 2022) & prior work, expert/P&T member interviews; HCUP 2019, J Thorac Dis. 2018 Mar; 10(3): 1960–1967;); 2. Pickering JW et al. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies, Am J Kidney Dis. 2015 Feb; Epidemiology data on file

COMPETITOR LANDSCAPE – FIRST-TO-MARKET POTENTIAL WITH NO CURRENTLY APPROVED THERAPIES

COMPANY (DRUG)	PHASE	MODE OF ACTION	PROOF-OF-CONCEPT DATA (HEART SURGERY)
Guard Therapeutics (RMC-035)	2b	A1M analog	\checkmark
Novartis (TIN816)	2a	Human CD39 enzyme	X
AZ/Alexion (Ultomiris)	3*	C5 inhibitor	X
AM Pharma (Ilofotase alfa)	2**	Human alkaline phosphatase	X
Renibus Therapeutics (RBT-1)	2-3***	Iron sucrose + stannus protoporphyrin	-

*No clinical data in CS-AKI. Drug already approved for PNH and aHUS; Pivotal P3 study in CS-AKI started in Q3 2023.

** Drug failed in sepsis-AKI; announced intent to change indication to CS-AKI

*** Drug targets acute endpoints like dialysis and length of hospital stay. Did not show efficacy on AKI in Phase 2 study

SOLID IP POSITION

- Composition-of-Matter (CoM) patents until 2037, covering RMC-035 & related variants obtained in all major markets (eg, US, EU, Japan, China)
- Possibility for up to 5 years patent extension
- Additional medical use patents with expiry 2029-2037
- Filed patents within GTX platform with expiry 2044
 - CoM & Medical Use

Preclinical R&D – GTX platform

GTX PLATFORM – SUMMARY & OBJECTIVES


- Novel proprietary short peptides with same MoA as RMC-035
- Enables therapeutic potential in chronic setting
 - Kidney (eg DKD, FSGS, IgAN, Alport)
 - Non-kidney (eg hemolytic disorders, vascular diseases)
- Preclinical PoC established in multiple kidney disease models
- Clinically validated MoA for kidney protection in Phase 2 AKITA study translational confidence with de-risked development in CKD
- Opportunity for MoA-driven patient selection
- Significant commercial opportunity with blockbuster potential
- Candidate drug nomination pending

MoA, mechanism-of-action; DKD, diabetic kidney disease; FSGS, focal segmental glomerulosclerosis; IgAN, IgA nephropathy; CKD, chronic kidney disease; PoC, proof-of-concept

POSITIONING & OPPORTUNITIES FOR GTX PEPTIDES

EXAMPLES OF POTENTIAL USE

GUARD THERAPEUTICS – IN SHORT

- Clinical stage biotechnology company focusing on kidney diseases
- Lead investigational drug RMC-035 developed for prevention & treatment of kidney injury in relation to open heart surgery
 - Granted Fast Track Designation by the FDA
- Recently completed Phase 2 study (n=177) demonstrated robust efficacy on clinically relevant kidney endpoints (eGFR, MAKE)
- Entering Phase 2b dose-finding study (POINTER) followed by a single Phase 3 study with potential for conditional (accelerated) approval
- Lead indication USD >1 bn opportunity alone no approved therapies
- Preclinical peptide platform based on RMC-035 mechanism with strong efficacy in CKD models, addressing even larger market opportunities
- Listed on Nasdaq First North Growth Market in Stockholm [GUARD]