Redefining Kidney Disease Treatment with A1M Therapies

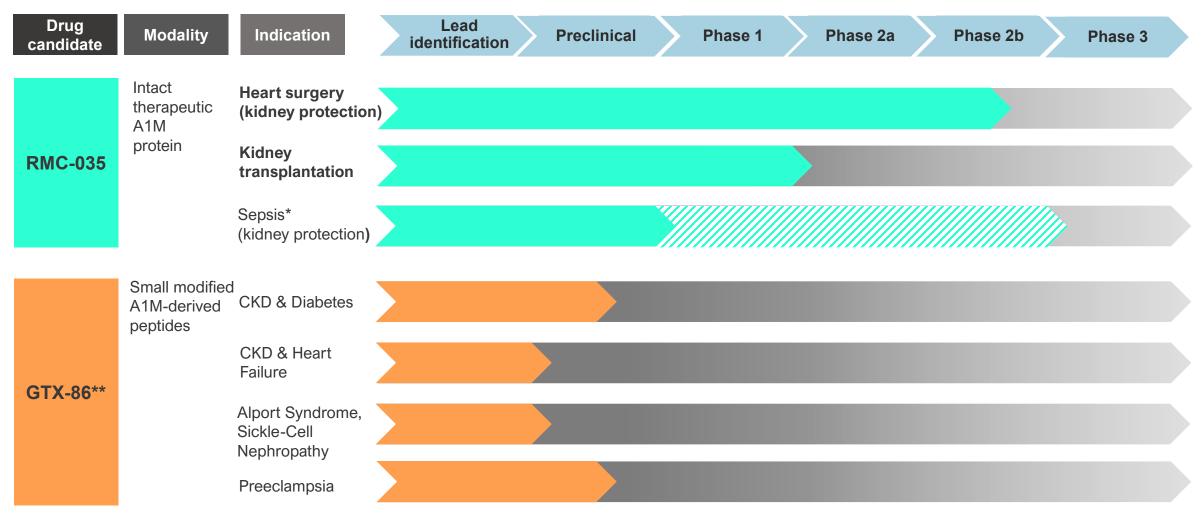
Non-confidential summary

PIONEERING TRANSFORMATIVE MEDICINES FOR KIDNEY DISEASE

RMC-035 for **kidney protection** in open-heart surgery

- Clinical proof-of-concept established in Phase 2a AKITA study with 177 patients
 - > 59% reduction vs placebo (MAKE, regulatory endpoint)
- > Phase 2b POINTER study ongoing > enrolment completed, results expected in Q4 2025
- > Granted FDA Fast Track Designation; eligible for Breakthrough Therapy Designation
- > First-to-market potential; >USD 1 billion market no approved therapies

Additional **opportunities** with RMC-035 & GTX peptides


- > Phase 3 ready sepsis program and Phase 2a/b ready kidney transplantation program for >USD 5.6 billion market
- > Unique positioning of preclinical GTX peptides in chronic kidney disease for >USD 8 billion market
- > Listed in Stockholm with top shareholders including Industrifonden and Swedbank Robur [Nasdaq FN Growth Market: GUARD]

EXPERIENCED MANAGEMENT TEAM WITH STRONG & PROVEN TRACK RECORD IN DRUG DEVELOPMENT

NAME / POSITION **NAME / POSITION EXPERIENCE EXPERIENCE TOBIAS L. AGERVALD** KARIN BOTHA +10 +20 astellas NOVARTIS SmithKline Beecham MD, PhD, CEO MSc, CFO years in industry years in industry GlaxoSmithKline **Fujisawa** AstraZeneca 2 **PETER GILMOUR** +20 **MICHAEL REUSCH** +30 MSc, PhD, CSO/Head MD, CMO of Preclinical years in industry years in industry astellas astellas oncopeptides **Medivir TORBJÖRN LARSSON** SARA THURESSON +15 +30 BSc, Head of CMC MSc, Head of Clinical years in industry years in industry Operations Pharmacia &Upjohn **IQVIA Medivir**

DIFFERENTIATED PIPELINE BASED ON A1M MECHANISM

^{*} Opportunity to initiate pivotal Phase 3 study in sepsis following results in ongoing Phase 2b study (POINTER) in open-heart surgery.

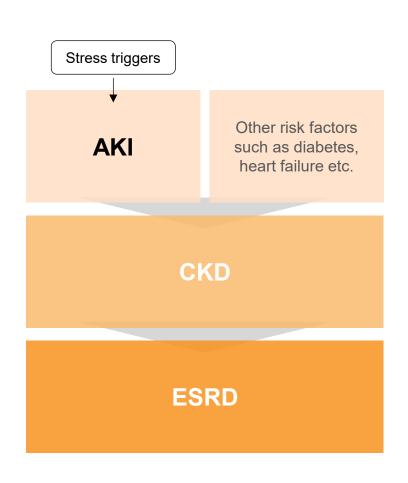
^{**} Multiple GTX peptides fulfill criteria for candidate drug nomination. GTX-86 at nomination stage. A1M, alpha-1-microglobulin.

CHRONIC KIDNEY DISEASE & END-STAGE RENAL DISEASE – A GLOBAL HEALTH CONCERN

Acute Kidney Injury (AKI):

- Multiple causes, often resulting from in-hospital complications like severe infections & sepsis and major surgeries (e.g., open-heart surgery, kidney transplantation)
- 50% or more of high-risk open-heart surgery patients develop AKI; addressable patient population ~100,000-120,000 cases per year in the US alone (~30,000 patients with pre-operative CKD)

Progression to Chronic Kidney Disease (CKD):


- AKI raises the risk of CKD; 15-20% progress to advanced CKD within 24 months
- CKD leads to severe complications, e.g., cardiovascular disease and kidney failure
- Years of life lost (YLL) from CKD are expected to surpass diabetes by 2040

AKI in patients with pre-existing CKD:

- CKD is a strong risk factor for AKI
- AKI in CKD accelerates progression to ESRD high unmet need

CKD to End-Stage Renal Disease (ESRD):

- 10-15% of CKD patients advance to ESRD; requires dialysis or kidney transplant
- High mortality rate (15-20%), worse than many cancers
- Represents 7% of Medicare costs but affects 1% of the population

THERAPEUTIC A1M DELIVERY – A NOVEL PARADIGM WITH CLINICALLY VALIDATED MECHANISM

Harnessing the natural properties of A1M

- Endogenous ~22 kDa circulating glycoprotein
 - Liver main source of expression
- Ubiquitous distribution & cellular uptake
- Renal clearance
- Evolutionary conserved house-keeping mechanism:
- Potent dual-action inhibitor of oxidative stress (reductase, radical scavenging)
- Heme binding
- Mitochondrial protection

3-D structure of A1M protein

Bergwik et al., Front Physiol 2021

A1M PROTECTS KIDNEY FUNCTION BY TARGETING CRITICAL DISEASE PATHWAYS

Challenges	A1M's Key Actions		Protective Effects	
Oxidative stress damages kidney cells	 Neutralizes Oxidative Stress		Reduces cell injury from ROS and hemolysis	
Hemolysis-induced kidney injury	 Binds & Degrades Free Heme		Prevents cell toxicity from free heme / hemoglobin	
Mitochondrial damage and cell death	 Stabilizes Mitochondria	→	Protects mitochondrial integrity	
Inflammatory response after ischemia-reperfusion	Prevents Secondary Inflammation		Reduces inflammatory injury and tissue scarring	

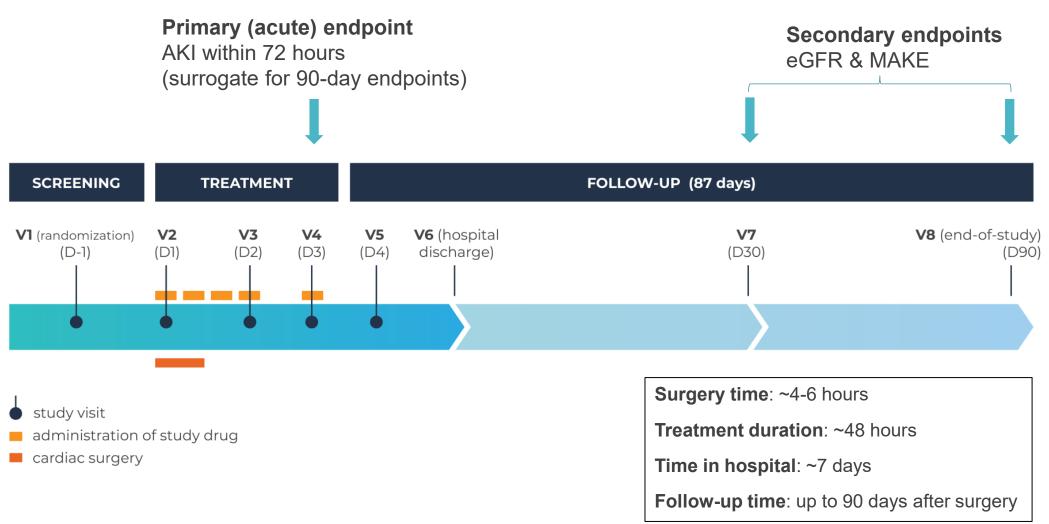
Bergwik et al., Front Physiol 2021

RMC-035 – recombinant human intact A1M

Kidney protection in open-heart surgery

COMPLETED PHASE 2a AKITA STUDY

- OUTLINE & OBJECTIVES

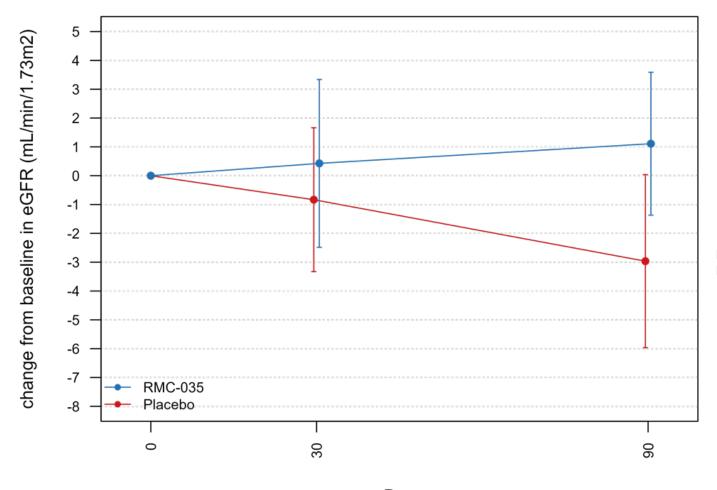


- Recruitment in the U.S., Canada & Europe
- Double-blind, placebo-controlled study in patients undergoing open-heart surgery at increased risk for kidney injury
- 177 patients randomized and dosed
- Main objective: proving efficacy & safety with the maximum possible dose
 - <u>Primary endpoint:</u> acute SCr change meeting AKI criteria
 (surrogate for long-term renal outcomes, allowing for lower sample size. Not accepted regulatory endpoint)
 - <u>Secondary endpoints:</u> eGFR change and Major Adverse Kidney Events (MAKE) at Day 90 (clinically meaningful outcomes, **MAKE** is the accepted regulatory endpoint)
- Start dose 1.3 mg/kg
 - 0.65 mg/kg to subjects with low pre-operative renal function due to risk for overexposure associated with transient SCr increase (tubular overload)

COMPLETED PHASE 2a AKITA STUDY

- FLOWCHART

PHASE 2a RESULTS SUPPORT ROBUST EFFICACY ON HARD KIDNEY ENDPOINTS


Efficacy stronger than required for regulatory approval based on renal function (eGFR) & Major Adverse Kidney Events (MAKE) on Day 90

- Statistically significant & clinically relevant improvement of eGFR vs placebo
 - 4.3 mL/min (full population)
 - 7.9 mL/min (pre-defined subgroup of patients with chronic kidney disease [CKD])
- Reduced proportion of patients with MAKE90 (i.e., severe loss of kidney function)
 - 59% risk reduction vs placebo for composite endpoint MAKE90 (death, dialysis or ≥ 25% eGFR loss)
 - FDA recommends MAKE90 as primary endpoint in Phase 3 20% risk reduction sufficient for approval

Results support progression to Phase 2b

RMC-035 PREVENTS LOSS OF RENAL FUNCTION AFTER OPEN-HEART SURGERY

MMRM model

4.3 mL/min **p=0.06***

Pre-defined alpha level was 0.1. P-values < 0.1 are statistically significant.

Day

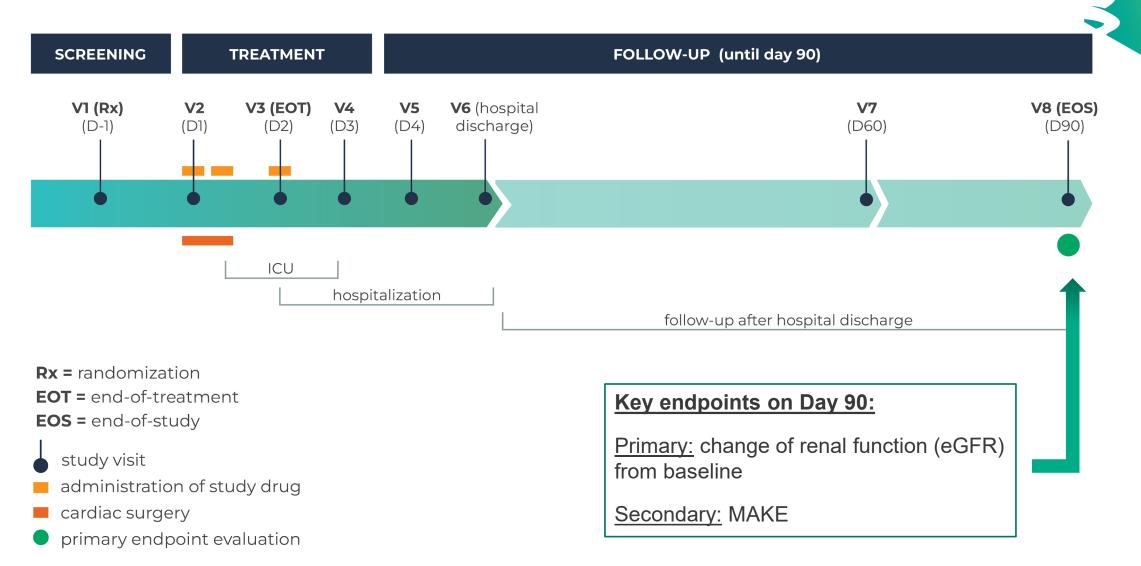
RMC-035 CONSISTENTLY REDUCES MAKE90 USING VARIOUS THRESHOLDS OF eGFR LOSS

Secondary endpoint MAKE90 (death, dialysis, ≥ 25% eGFR loss) met

	RMC-035 Evs/PtsRate (90% CI)	Placebo Evs/PtsRate (90% CI)		Risk ratio (90 % CI) p-value
MAKE 90 days (10 % eGFR cutoff)	18/8920.2 (13.2-27.2)	25/8828.4 (20.5-36.3)		0.71 (0.46-1.10) 0.200
MAKE 90 days (15 % eGFR cutoff)	14/89 15.7 (9.4-22.1)	22/8825.0 (17.4-32.6)		0.64 (0.39-1.05) 0.138
MAKE 90 days (20 % eGFR cutoff)	11/89 12.4 (6.6-18.1)	18/8820.5 (13.4-27.5)		0.61 (0.35-1.08) 0.150
MAKE 90 days (25 % eGFR cutoff)	6/89 6.7 (2.4-11.1)	14/88 15.9 (9.5-22.3)	•	0.41 (0.19-0.88) 0.047
MAKE 90 days (30 % eGFR cutoff)	4/89 4.5 (0.9-8.1)	14/88 15.9 (9.5-22.3)	•	0.30 (0.13-0.70) 0.010
			0.25 0.5 1 Favours RMC-035	1.5

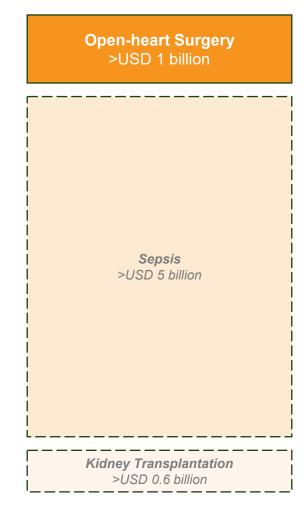
PHASE 2b POINTER STUDY - STATUS UPDATE

- Final optimization step before Phase 3
- 170 patients randomized and dosed (Europe & North America)
- Two RMC-035 dose arms (30 & 60 mg) and Placebo (2:2:3 randomization)
 - Simplified dosing: 3 infusions within 24 hours, switch from weight-based to flat dose
- Primary endpoint: change in eGFR from before surgery to Day 90


Important study milestones

- ✓ Positive outcome of DSMC safety reviews (no safety signals identified)
- ✓ Enrolment completed in June 2025, ahead of schedule (9 months enrollment time)
- Top-line results anticipated in Q4 2025

eGFR, estimated glomerular filtration rate; DSMC, data safety monitoring committee

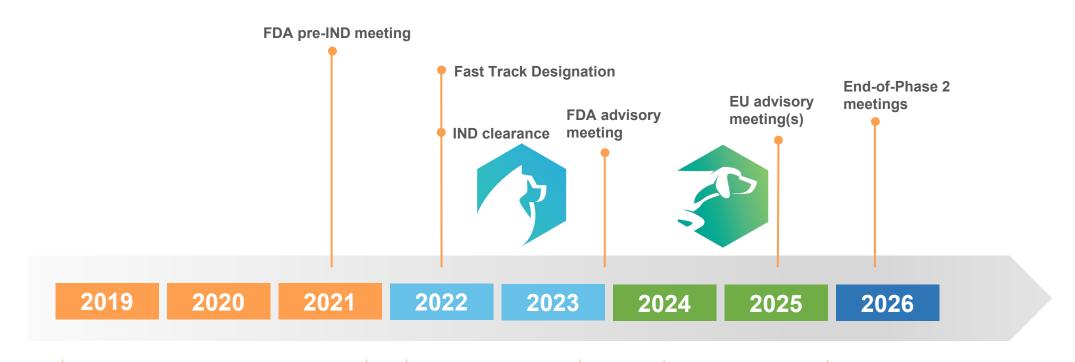

ONGOING PHASE 2b POINTER STUDY

- FLOWCHART

CLEAR PATH TOWARDS MARKET APPROVAL FOR RMC-035

- Fast Track Designation granted by the US FDA
 - Reducing risk for death, dialysis or irreversible loss of kidney function in patients undergoing open-chest cardiac surgery at high risk for acute kidney injury
- Indication eligible for Breakthrough Therapy Designation
- Single pivotal Phase 3 study sufficient to support market approval
 - Primary endpoint MAKE at Day 90 after surgery (~600 patients)
 - Potential for accelerated approval based on interim analysis of eGFR (~300 patients)
 - First-to-market potential
- Phase 3 Expansion Opportunities
 - Sepsis Phase 3 ready and Kidney Transplant Phase 2a/b ready, following successful Phase 2b POINTER results

FIRST-TO-MARKET POTENTIAL WITH NO APPROVED THERAPIES - COMPETITOR LANDSCAPE


COMPANY (DRUG)	PHASE	MODE OF ACTION	POC DATA HEART SURGERY	COMMENT
Guard Therapeutics (RMC-035)	2 b	A1M analog	Yes	Ongoing – expected results year-end 2025
Novartis (TIN-816)	2a	Human CD39 enzyme	-	Ongoing – expected results Q3 2025 N=120, acute primary endpoint Study did not reach primary endpoint and stopped for futility
AstraZeneca / Alexion (Ultomiris)	3	Complement 5 inhibitor	-	Ongoing – expected results Q1 2027 N=736, MAKE is primary endpoint No efficacy data available in open-heart surgery
Genentech (GDC-8264)	2	RIP-1 inhibitor	-	Ongoing – expected results Q4 2027 N=404, MAKE is primary endpoint No efficacy data available
AM Pharma (Ilofotase alfa)	2a	ALP analog	-	Ongoing – results expected Q4 2025 N=250, acute primary endpoint No efficacy data available in open-heart surgery
Renibus Therapeutics (RBT-1)	3	Iron sucrose + stannus protoporhyrin	-	Targets acute endpoints like length of hospital stay & hospital readmission rate. Did not show efficacy on renal endpoints in Phase 2a study.

RECENT PHARMA DEALS IN NEPHROLOGY

- TOTAL DEAL VALUE OVER \$12BN 2023-25 YTD

TARGET	ACQUIRER	YEAR	DEAL VALUE	STAGE	LEAD ASSET	INDICATION
Regulus Tx	Novartis	2025	\$800m + \$900m milestones	Phase 1b	Farabursen	Autosomal Dominant Polycystic Kidney Disease
Alpine Immune Sciences	Vertex Pharma	2024	\$4.9bn	Phase 2	Povetacicept	IgAN
Human Immunology Biosciences	Biogen	2024	\$1.15bn + milestones	Phase 2	Feltzartamab	IgAN, Primary membranous nephropathy & antibody-mediated rejection
Jnana Tx	Otsuka	2024	\$800m	Preclinical	Panel of solute carrier inhibitors	lon transporter kidney disease
Calliditas	Asahi Kasei	2024	\$1.1bn	Marketed	Tarpeyo (Budesonide)	IgAN
Chinook Tx	Novartis	2023	\$3.5bn	Phase 3	Atrasentan & Zigakibart	IgAN
CinCor Pharma	AstraZeneca	2022	\$1.8bn	Phase 2	Baxdrostat	Treatment-resistant hypertension, primary aldosteronism and CKD
Vifor Pharma	CSL	2021	\$12.3bn	-	Product portfolio in nephrology	-
Sanifit Tx	Vifor Pharma	2021	\$205m + milestones	Phase 3	SNF472	Treatment for calciphylaxis ESRD patients
Corvidia Tx	Novo Nordisk	2020	\$2.1bn	Phase 2	Zilitivekimab	Therapies within CKD segments

KEY MILESTONES & DELIVERY ACCORDING TO PLAN

Clinical Phase 1 program

- ✓ ROS-01 (single dose, healthy subjects)
- √ ROS-02 (multiple doses, healthy subjects)
- ✓ ROS-03 (renal impairment study)
- ✓ ROS-04 (safety/PK study in heart surgery)

Phase 2a AKITA study

✓ ROS-05 (proof-of-concept, heart surgery)

Phase 1b study

✓ ROS-06, kidney transplant

Phase 2b *POINTER* study

ROS-07 (dose-finding)

Phase 3 study heart surgery

Optional Phase 3 study in sepsis

Optional Phase 2a/b study in kidney transplantation

GTX platform – small A1M-derived peptides

Treatment of chronic kidney disease

GTX PEPTIDES – 2nd GENERATION A1M DRUGS

Delivered SC

Intended as chronic therapy with intermittent dosing (e.g., for CKD)

- Panel of novel A1M-derived peptides with preserved functionality vs native A1M
 - ~15-35 aa, chemical synthesis
- Enables clinically validated A1M mechanism in non-acute settings
- Robust preclinical efficacy across diverse acute and chronic kidney models
- Strong IP, composition of matter until 2044
- Broad clinical development opportunity with unique positioning in CKD
 - High degree of optionality strategy yet to be refined
- Candidate drug nomination pending; transfer into slow-release formulation
- ~2 years to IND

GTX PEPTIDES – MASSIVE OPPORTUNITY IN LATE-STAGE CKD

- High potency and efficacy, comparable to RMC-035
- Broad impact across CKD etiologies, including orphan diseases
 - Demonstrated robust efficacy in a wide range of preclinical disease models
- Unique opportunity in late-stage CKD patients:
 - Highest risk for progression to ESRD
 - Often excluded from clinical trials
 - Current CKD therapies ineffective or contraindicated

PIONEERING TRANSFORMATIVE MEDICINES FOR KIDNEY DISEASE

RMC-035 for **kidney protection** in open-heart surgery

- Clinical proof-of-concept established in Phase 2a AKITA study with 177 patients
 - > 59% reduction vs placebo (MAKE, regulatory endpoint)
- > Phase 2b POINTER study ongoing > enrolment completed, results expected in Q4 2025
- > Granted FDA Fast Track Designation; eligible for Breakthrough Therapy Designation
- > First-to-market potential; >USD 1 billion market no approved therapies

Additional **opportunities** with RMC-035 & GTX peptides

- > Phase 3 ready sepsis program and Phase 2a/b ready kidney transplantation program for >USD 5.6 billion market
- > Unique positioning of preclinical GTX peptides in chronic kidney disease for >USD 8 billion market
- > Listed in Stockholm with top shareholders including Industrifonden and Swedbank Robur [Nasdaq FN Growth Market: GUARD]

Appendix

ADDITIONAL OPPORTUNITY FOR RMC-035

- SEPSIS

- Sepsis is leading cause of acute kidney injury (AKI). Multifactorial etiology, kidney cell stress
 due to reduced perfusion, oxidative stress, endotoxins and inflammation
- RMC-035 efficacious in preclinical sepsis models
- In the US, ~1.7 million patients develop sepsis each year; ~800,000 patients with sepsis develop AKI; and ~250,000 patients develop CKD
- Dosing regimen: once daily up to 5 days; First dose given at sepsis diagnosis (ICU admission)
- Clear regulatory path to market approval Major Adverse Kidney Events (MAKE) at 90 days
- Single confirmatory Phase 3 study sufficient for approval
 - Sample size ~400-600 patients depending on eligibility criteria
 - Recruitment time ~2 years
- Pivotal Phase 3 study in sepsis enabled by Phase 2b POINTER study (heart surgery)
 - Interim analysis with sample size re-estimation to be built in in the absence of preceding efficacy study
 - Should be preceded by a Phase 1b study of approximately 15-20 patients to evaluate exposure & safety

ADDITIONAL OPPORTUNITY FOR RMC-035

KIDNEY TRANSPLANTATION

- Phase 1b study of RMC-035 completed
- Acute kidney graft dysfunction & impaired long-term dysfunction in deceased donor transplantation due to graft ischemia & ischemia-reperfusion injury, and inflammatory / fibrotic response
- Approximately 20,000 deceased donor kidney transplantation performed annually in US eligible for orphan drug designation
- Treatment goal: protect long-term graft function in recipient, avoiding need for re-transplantation
- Dosing regimen: once daily up to 5 days; First dose given intra-operatively to graft recipient
- Clear regulatory path to market approval eGFR at 1 year after transplantation
- Single confirmatory Phase 3 study sufficient for approval
 - Sample size 300-600 patients depending on eligibility criteria
 - Recruitment time 2-3 years
- New formulation considered, may enable higher price point than in open-heart surgery

eGFR, estimated glomerular filtration rate.

GLOBAL MARKET OPPORTUNITY FOR RMC-035 SUPPORTS BLOCKBUSTER POTENTIAL

- Open-heart surgery: >USD 1 billion (global)
 - 100,000 patients annually in the US (~30,000 with CKD). Total US population ~250,000 patients.
 - Price estimate: USD 5,000 10,000 per patient
 - Total US market potential: USD 0.5 1 billion
- Sepsis: >USD 5 billion (global)
 - ~1.7 million adults in the US develop sepsis each year
 - ~500,000 patients in scope for treatment
 - Total US market potential: USD 2.5 5 billion
- Kidney transplantation: >USD 0.6 billion (global)
 - ~20,000 patients in the US undergoing deceased donor kidney transplantation each year
 - Total US market potential: USD 0.3 0.6 billion (estimated price USD 15,000 30,000 per patient)

STRONG VALUE PROPOSITION – EFFICACY & COST-BENEFIT PROFILE

Robust kidney protection in AKITA study

~5 x greater eGFR effect than one year of standard-of-care CKD treatment

3 x greater risk reduction of MAKE than required for FDA approval

Strong evidence for eGFR in Cost Effectiveness Models

Value dossier supported by available health economic data in patients with CKD

Short-term therapeutic benefit

(AKI, dialysis, length of hospital stay & re-admission)

Acute benefits offer direct & indirect hospital savings

Attractive cost-benefit profile

Anticipated formulary inclusion with marginal impact on hospital cost

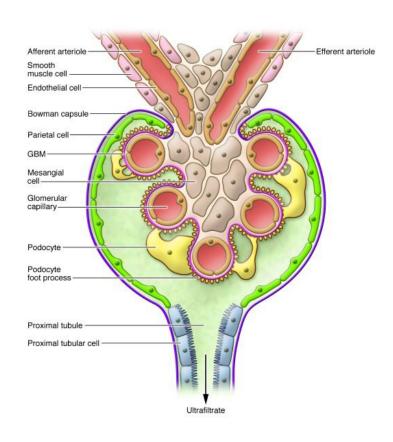
Fulfils NTAP criteria

Value dossier based on HEOR & available Cost Effectiveness Models in AKI & CKD

Critical Pre- and Post-Launch activities

Cost Effectiveness
Analysis: quality-adjusted
life years (QALYs)

Budget Impact Model & Budget Analysis Tool


Preclinical GTX data

THERAPEUTIC A1M RAPIDLY DISTRIBUTES TO KIDNEYS

- Renal clearance of LMW proteins and peptides (glomerular filtration)
- Targeted uptake in proximal tubules
 - Tubular injury is a hallmark of AKI & progressive CKD, driving tubulointerstitial
 & glomerular fibrosis
- Distribution profile enables global kidney protection
 - Glomerular barrier (endothelium, glycocalyx, podocytes, basal membrane)
 - Proximal tubules primary site of intracellular uptake in kidneys

Combined glomerular & tubular protection against albuminuria & hematuria (not addressed by available therapies)

THERAPEUTIC POTENTIAL ACROSS THE SPECTRUM OF KIDNEY DISEASE

Glomerular dysfunction, podocyte & mesangial activation¹

Loss of filtration barrier

Inflammatory mediator release & tubular cell injury

Metabolic dysfunction

Pathophysiology Podocyte effacement Mesangial expansion **ROS & NOX4** Inflammation

Proteinuria Hematuria

Tubular inflammation **Fibrosis ROS & NOX4**

Metabolic dysfunction **ROS & NOX4**

Maintenance of glomerular structure^{2,3}

Antioxidant activity & tubular cell activation^{4,5,6}

Stabilization of mitochondrial structure & function, reduced ROS^{7,8}

GTX intervention

Protection of podocytes / mesangial cells^{2,3}

Targeting critical & common disease pathways in late-stage CKD – independent of CKD etiology

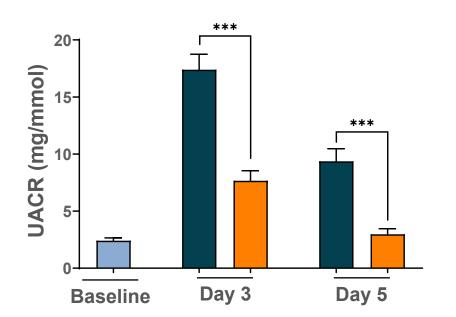
ROS, reactive oxygen species; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4

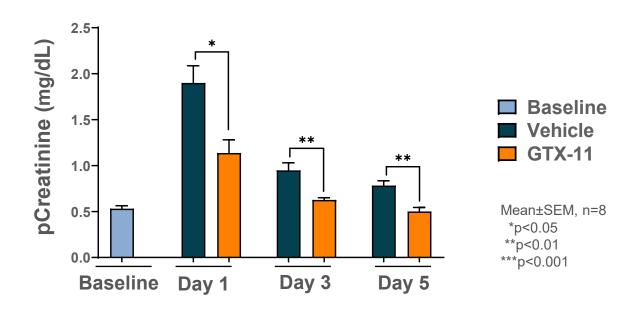
¹ Wickman et al 2016. PLoS One. 11(5): e0155255.

² Nääv et al 2015. PLoS One. 0125499

³ Wester-Rosenlöf et al 2014. 9(1): e86353. 7 Kristiansson et al. 2020. Int J Mol Sci. 21(6): 5825

⁵ Burmakin et al. 2024 Am J Physiol Renal Physiol. doi: 10.1152/ajprenal.00067.2024

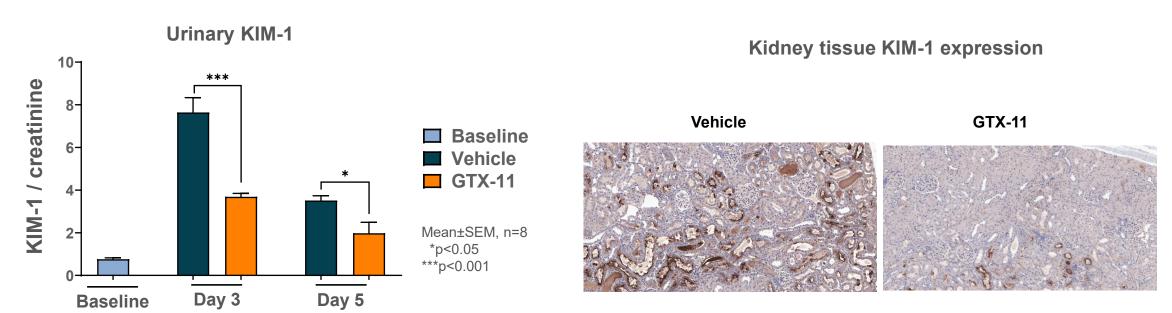

⁶ Study reports with in vitro and in vivo GTX activity on file


⁴ Åkerström et al 2019, Antioxidants & Redox Signal, 30(4): 489, 8 Olsson et al 2013, Antiox & Redox Signal, 18(6): 2017

GTX-11 IMPROVES KIDNEY FUNCTION & REDUCES ALBUMINURIA

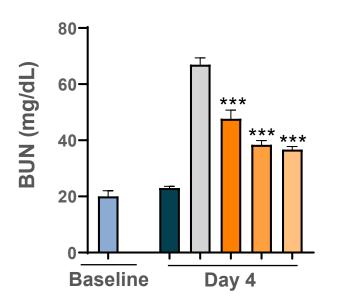
Rat kidney IRI model

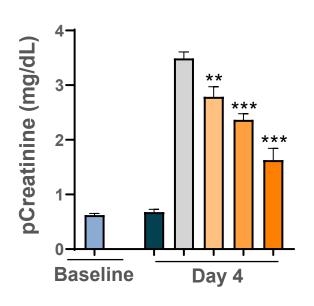
- GTX-11 dosed by IV injection at 5 mg/kg
 - 30 min before renal pedicle clamp ischemia & 4, 8, 24, 48 hours post-reperfusion

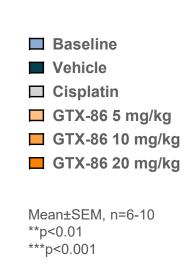


GTX-11 REDUCES KIDNEY INJURY (TISSUE & URINE BIOMARKERS)

Rat kidney IRI model


- KIM-1 (tubular cell injury marker) expression assessed at sacrifice
 - KIM-1 protein assessed in urine by ELISA & tissue expression by IHC
- GTX-11 dosed by IV injection at 5 mg/kg
 - 30 min before ischemia & 4, 8, 24, 48 hours post-reperfusion




GTX-86 IMPROVES KIDNEY FUNCTION – DOSE RESPONSE

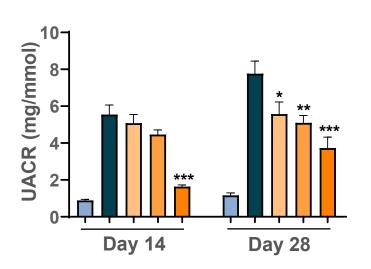
Mouse cisplatin nephropathy model

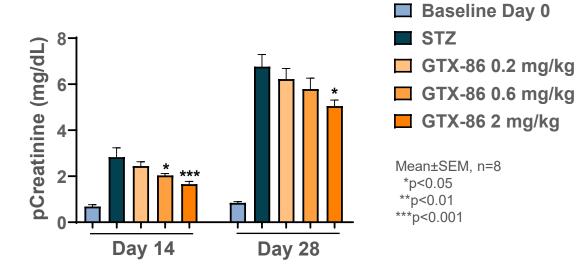
- GTX-86 dosed by SC injection at 5, 10 or 20 mg/kg
 - Once daily injection until sacrifice (first dose in conjunction with cisplatin induction)



GTX-86 IMPROVES KIDNEY FUNCTION & REDUCES ALBUMINURIA – DOSE RESPONSE

Mouse FSGS model


 GTX-86 administered SC at 0.2, 0.6, 2 or 6 mg/kg once daily (initiated before induction with adriamycin)



GTX-86 REDUCES ALBUMINURIA & IMPROVES KIDNEY FUNCTION – DOSE RESPONSE

Mouse diabetic kidney disease model

- Diabetes and renal dysfunction apparent by Day 21 after streptozocin (STZ) administration
- At that point (Day 0), GTX-86 injected SC once daily at either 0.2, 0.6 or 2 mg/kg for 28 days

